207 research outputs found

    Galactic PeV neutrinos from dark matter annihilation

    Full text link
    The IceCube Neutrino Observatory has observed highly energetic neutrinos in excess of the expected atmospheric neutrino background. It is intriguing to consider the possibility that such events are probing physics beyond the standard model. In this context, O\mathcal{O}(PeV) dark matter particles decaying to neutrinos have been considered while dark matter annihilation has been dismissed invoking the unitarity bound as a limiting factor. However, the latter claim was done ignoring the contribution from dark matter substructure, which for PeV Cold Dark Matter would extend down to a free streaming mass of O\mathcal{O}(10−1810^{-18}M⊙_\odot). Since the unitarity bound is less stringent at low velocities, (σann\sigma_{\rm ann}v)≤4π/mχ2v\leq4\pi/m_\chi^2v, then, it is possible that these cold and dense subhalos would contribute dominantly to a dark-matter-induced neutrino flux and easily account for the events observed by IceCube. A Sommerfeld-enhanced dark matter model can naturally support such scenario. Interestingly, the spatial distribution of the events shows features that would be expected in a dark matter interpretation. Although not conclusive, 9 of the 37 events appear to be clustered around a region near the Galactic Center while 6 others spatially coincide, within the reported angular errors, with 5 of 26 Milky Way satellites. However, a simple estimate of the probability of the latter occurring by chance is ∼35%\sim35\%. More events are needed to statistically test this hypothesis. PeV dark matter particles are massive enough that their abundance as standard thermal relics would overclose the Universe. This issue can be solved in alternative scenarios, for instance if the decay of new massive unstable particles generates significant entropy reheating the Universe to a slightly lower temperature than the freeze-out temperature, TRH≲Tf∼4×104T_{\rm RH} \lesssim T_{\rm f}\sim4\times10^4~GeV.Comment: 14 pages, 3 figures, accepted for publication in Physical Review D; added: new IceCube data, Fig. 3 and related discussio

    Clustering in the Phase Space of Dark Matter Haloes. II. Stable Clustering and Dark Matter Annihilation

    Full text link
    We present a model for the structure of the particle phase space average density (P2SADP^2SAD) in galactic haloes, introduced recently as a novel measure of the clustering of dark matter. Our model is based on the stable clustering hypothesis in phase space, the spherical collapse model, and tidal disruption of substructures, which is calibrated against the Aquarius simulations. Using this model, we can predict the behaviour of P2SADP^2SAD in the numerically unresolved regime, down to the decoupling mass limit of generic WIMP models. This prediction can be used to estimate signals sensitive to the small scale structure of dark matter. For example, the dark matter annihilation rate can be estimated for arbitrary velocity-dependent cross sections in a convenient way using a limit of P2SADP^2SAD to zero separation in physical space. We illustrate our method by computing the global and local subhalo annihilation boost to that of the smooth dark matter distribution in a Milky-Way-size halo. Two cases are considered, one where the cross section is velocity independent and one that approximates Sommerfeld-enhanced models. We find that the global boost is ∼10−30\sim10-30, which is at the low end of current estimates (weakening expectations of large extragalactic signals), while the boost at the solar radius is below the percent level. We make our code to compute P2SADP^2SAD publicly available, which can be used to estimate various observables that probe the nanostructure of dark matter haloes.Comment: 12 pages, 7 figures, version published in MNRAS (minor corrections), publicly available code in IDL at http://spaces.perimeterinstitute.ca/p2sad

    Mapping extragalactic dark matter structures through gamma-rays

    Full text link
    If dark matter is composed of neutralinos, the gamma-ray radiation produced in their annihilation offers an attractive possibility for dark matter detection. This process may contribute significantly to the extragalactic gamma-ray background (EGB) radiation, which is being measured by the FERMI satellite with unprecedented sensitivity. Using the high-resolution Millennium-II simulation of cosmic structure formation we have produced the first full-sky maps of the expected contribution of dark matter annihilation to the EGB radiation. Our maps include a proper normalization of the signal according to a specific supersymmetric model based on minimal supergravity. The new simulated maps allow a study of the angular power spectrum of the gamma-ray background from dark matter annihilation, which has distinctive features associated with the nature of the annihilation process. Our results are in broad agreement with analytic models for the gamma-ray background, but they also include higher-order correlations not readily accessible in analytic calculations and, in addition, provide detailed spectral information for each pixel. In particular, we find that color maps combining different energies can reveal the cosmic large-scale structure at low and intermediate redshifts.Comment: 7 pages, 5 figures, 2009 Fermi Symposium, eConf Proceedings C09112

    The growth of galactic bulges through mergers in LCDM haloes revisited. II. Morphological mix evolution

    Full text link
    The mass aggregation and merger histories of present-day distinct haloes selected from the cosmological Millennium Simulations I and II are mapped into stellar mass aggregation and galaxy merger histories of central galaxies by using empirical stellar-to-halo and stellar-to-gas mass relations. The growth of bulges driven by the galaxy mergers/interactions is calculated using dynamical prescriptions. The predicted bulge demographics at redshift z~0 is consistent with observations (Zavala+2012). Here we present the evolution of the morphological mix (traced by the bulge-to-total mass ratio, B/T) as a function of mass up to z=3. This mix remains qualitatively the same up to z~1: B/T<0.1 galaxies dominate at low masses, 0.1<B/T<0.45 at intermediate masses, and B/T>0.45 at large masses. At z>1, the fractions of disc-dominated and bulgeless galaxies increase strongly, and by z~2 the era of pure disc galaxies is reached. Bulge-dominated galaxies acquire such a morphology, and most of their mass, following a downsizing trend. Since our results are consistent with most of the recent observational studies of the morphological mix at different redshifts, a LCDM-based scenario of merger-driven bulge assembly does not seem to face critical issues. However, if the stellar-to-halo mass relation changes too little with redshift, then some tensions with observations appear.Comment: 16 pages, 11 figures. Accepted for publication in MNRAS. The method and the initial conditions are described in more detail. References adde

    Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    Full text link
    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the mu-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |mu|<9.0x10^(-5) found by the COBE/FIRAS experiment.Comment: 10 pages, 6 figures, accepted for publication in Physical Review D. Corrections to eqs. 9,10,14 and 16. Figures updated accordingly. No major changes to previous results. Website with online tools for Sommerfeld-related calculations can be found at http://www.mpa-garching.mpg.de/~vogelsma/sommerfeld

    Dark matter cores in the Fornax and Sculptor dwarf galaxies: joining halo assembly and detailed star formation histories

    Get PDF
    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the Mass Assembly History of their dark matter (DM) halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNeII into DM particles is ϵgc=0.05\epsilon_{\rm gc}=0.05, we find that a single early episode, z≳zinfallz \gtrsim z_{\rm infall}, that combines the energy of all SNeII due to explode over 0.5 Gyr, is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in Cold Dark Matter (CDM) halos via early episodic gas outflows triggered by SNeII. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size haloes.Comment: ApJL accepted versio

    Self-Interacting Dark Matter Subhalos in the Milky Way's Tides

    Full text link
    We study evolution of self-interacting dark matter (SIDM) subhalos in the Milky Way (MW) tidal field. The interaction between the subhalos and the MW's tides lead to more diverse dark matter distribution in the inner region, compared to their cold dark matter counterparts. We test this scenario with two MW satellite galaxies, Draco and Fornax, opposite extremes in the inner dark matter content, and find that they can be accommodated within the SIDM model proposed to explain the diverse rotation curves of spiral galaxies in the field.Comment: 6 pages, 3 figures. Updated figures and text. Accepted for publication in PR

    Empirical testing of Tsallis' Thermodynamics as a model for dark matter halos

    Full text link
    We study a dark matter halo model from two points of view: the ``stellar polytrope'' (SP) model coming from Tsallis' thermodynamics, and the one coming from the Navarro-Frenk-White (NFW) paradigm. We make an appropriate comparison between both halo models and analyzing the relations between the global physical parameters of observed galactic disks, coming from a sample of actual galaxies, with the ones of the unobserved dark matter halos, we conclude that the SP model is favored over the NFW model in such a comparison.Comment: 5 pages, 1 figure, To appear in the Proceedings of X Mexican Workshop on Particles and Fields, Morelia Michoac\'an, M\'exico, November 7-12, 200
    • …
    corecore